

Question Time

How many lines of output are produced by the following script.

```
for k=100:200
    if rem(k,2)~=0
        disp('k');
    end
end
```

A. 2
B. 50
C. 51
D. 101

For-Loop Shortcoming

When you use a for-loop, you need
to know the exact extent of the repetition.


```
% Running sum...
H = 0;
for tosses = 1:100
    r = rand;
    if r < . }
% Agree that this means "heads"
        H = H + 1;
    end
end
fprintf('H = %2d\n',H)
```

Not OK in Other Situations
Simulate the game of "Gap10":
Toss a fair coin until
| \#Heads - \#Tails | = 10
Score $=$ number of required tosses

The number of required tosses is not known in advance.

What We Need

A loop that "shuts down" as soon as $|\mathrm{H}-\mathrm{T}|==10$.

H = 0; T = 0; tosses $=0$;
while abs(H-T)<10

```
    r = rand;
    tosses = tosses + 1;
    if r<.5
        H=H+1;
    else
        T = T + 1;
    end
```

end
fprintf(...)

A Simple For-loop
s = 0;
for $k=1: 5$
s = s + k;
fprintf('\%2d \%2d\n',k,s)) end
$\begin{array}{rr}1 & 1 \\ 2 & 3 \\ 3 & 6 \\ 4 & 10 \\ 5 & 15\end{array}$

The While-loop Equivalent

k = 0; s = 0;
while $k<5$
$\mathrm{k}=\mathrm{k}+1 ; \mathrm{s}=\mathrm{s}+\mathrm{k} ;$
fprintf('\%2d \%2d\n',k,s)
end

1	1
2	3
3	6
4	10
5	15

How it Works in Detail
k = 0; s = 0;
while $k<5$
$\mathrm{k}=\mathrm{k}+1 ; \mathrm{s}=\mathrm{s}+\mathrm{k}$;
fprintf('\%2d \%2d\n',k,s)
end

Is k < 5 true? Yes. Execute the loop body.

How it Works in Detail
k = 0; s = 0;
while k < 5
$\mathrm{k}=\mathrm{k}+1$; $\mathrm{s}=\mathrm{s}+\mathrm{k}$;
fprintf('\%2d \%2d\n',k,s)
end

k and s are initialized

k = 0; s = 0;
while $k<5$
$k=k+1 ; s=s+k ;$
fprintf('\%2d $\left.\% 2 d \backslash n^{\prime}, k, s\right)$
end

1	1
2	3
3	6
4	10

Is k < 5 true? Yes. Execute the loop body.

Defining Variables

```
k = 0; s = 0;
while s < 30
    %s is the sum 1+ ... + k
    k = k + 1; s = s + k;
end
```

This "property" is true all during the loop

PseudoCode Development

Repeat while |OuterA - InnerA| $>.000001$
Increase n
Update InnerA
Update OuterA

Identify the repetition and a criteria that says "keep iterating".

Spotting a While Situation

InnerA $=(n / 2) \sin (2 \pi / n)$

As n increases, InnerA and OuterA approach pi, the area of the unit circle.

When will |OuterA - InnerA| <=.000001?

PseudoCode Development

$n=3$;
InnerA = area of inscribed triangle
OuterA = area of the circumscribed triangle
Repeat while |OuterA - InnerA| >. 000001
Increase n
Update InnerA
Update OuterA
The "players" have to be initialized

Pattern for doing something an Indefinite number of times
\% Initialization
while (not-stopping signal)
\% do something
\% update status (variables)
end

Question Time

What is the last line of output produced by this script?

$$
n=5
$$

while $n>1$ disp('I dunno') if $\operatorname{rem}(\mathrm{n}, 2)==0$ $\mathrm{n}=\mathrm{n} / 2$ else
$n=3 * n+1$ end end
$\begin{array}{lllll}\text { A. } 1 & \text { B. } 2 & \text { C. } 4 & \text { D. } 16 \text { E. I dunno }\end{array}$

Example 1: Up/Down Sequence

Pick a random whole number between one and a million. Call the number n and repeat this process:
if n is even, replace n by $n / 2$.
if n is odd, replace n by $3 n+1$
Does it ever take more than 1000 updates to reach one?

Two More While Examples

Each motivated by the limitations of the for-loop

Aside: Random Integers

How do we generate a random integer from an interval?

```
n = ceil(1000000*rand)
```


Need the Built-In Function ceil

\mathbf{a}	floor(a)	ceil(a)
15.9	15	16
12.0	12	12

floor: next smallest integer ceil : next biggest integer

Random Integers

n = ceil(1000000*rand)
$\% \mathrm{x}$ is random real, $0<\mathrm{x}<1$
$x=r a n d$
$\% \mathrm{y}$ is random real, $0<y<10 \wedge 6$ $y=100000^{*} x$
$\% \mathrm{n}$ is rand integer from $1, \ldots, 10^{\wedge} 6$ n = ceil(y)

The Central Repetition:

if $\operatorname{rem}(n, 2)==0$ n = n/2;
else
$n=3^{*} n+1$
end

Note cycling once $n==1$:
$1,4,2,1,4,2,1,4,2,1,4,2,1, \ldots$

Cycles after $n==1$

for step $=1: 1000$
if $\operatorname{rem}(n, 2)==0$
n = n/2;
else
n = 3*n + 1;
end
fprintf(' \%4d \%7d\n',step,n) end

Shuts Down When $n==1$..

```
step = 0;
while n > 1
    if rem(n,2)==0
        n = n/2;
    else
        n = 3*n + 1;
    end
    step = step+1;
    fprintf(' %4d %7d\n',step,n)
end
```


Example 2: Square Roots

Pick a random number x between one and a million. Compute the sqrt(x) by
$L=x ; W=1$;
Repeat until relative error in $L<=10^{\wedge}-15$:
$L=(L+W) / 2 ; W=x / L ;$
Print relative error in L

Shuts Down After Convergence
s = sqrt(x); L = x; $W=1 ; k=0 ;$
while $k==0$ || relErr > 10^-15
$\mathrm{k}=\mathrm{k}+1$;
L = (L+W)/2; W = x/L;
relError $=\mathrm{abs}(\mathrm{L}-\mathrm{s}) / \mathrm{s}$
end

Shuts Down After Convergence
$\mathrm{s}=\operatorname{sqrt}(\mathrm{x}) ; \mathrm{L}=\mathrm{x} ; \mathrm{W}=1 ; \mathrm{k}=0$;
while relErr > 10^-15
$\mathrm{k}=\mathrm{k}+1$;
L = (L+W)/2; W = x/L;
relError $=a b s(L-s) / s$
end

Error: relErr not initialized when the while Loop is entered.

```
    Shuts Down After Convergence
s = sqrt(x); L = x; W = 1; k = 0;
while k==0 || relErr > 10^-15
    k = k+1;
    L = (L+W)/2; W = x/L;
    relError = abs(L-s)/s
end
During the first check of the condition, \(k==0\) is true.
Matlab doesn't bother to check the relErr comparison since
the or is true. No prob that relErr uninitialized
```


Nested Loop Problem

On average, how many coin tosses are there in a game of Gap10?

Estimate by simulating 10,000 games.

PseudoCode

sum $=0$
for $k=1: 10000$
Simulate a game of Gap10 and assign
to the variable tosses the
number of required tosses.
sum = sum + tosses:
sum = sum + tosses;
end
p = sum/10000

```
H = 0; T = 0; tosses = 0;
while abs(H-T)<10
    r = rand;
    tosses = tosses + 1;
    if r < . }
        H = H + 1;
    else
        T = T + 1;
    end
end
```

